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Improving Microgrid Low-Voltage Ride-Through
Capacity Using Neural Control

Larbi Djilali , Edgar N. Sanchez , Fernando Ornelas-Tellez, Alberto Avalos, and Mohammed Belkheiri

Abstract—In this article, a neural sliding-mode linearization
controller is proposed to regulate the generated active and reactive
power for each distributed energy resource in a microgrid. The
developed controller is based on recurrent high-order neural net-
work identification, trained online with an extended Kalman filter
learning algorithm. Based on such neural identification, adequate
models of the microgrid generation units are obtained even in the
presence of grid disturbances, which helps the proposed controller
to reject disturbances, to ensure stability, and to operate the renew-
able energy sources under different grid scenarios. The proposed
microgrid is composed of a wind power system, a solar power sys-
tem, a battery bank, and a load demand. In addition, the microgrid
under study is interconnected to an IEEE nine-bus system. The
whole system is simulated in real time using the Opal-RT (OP5600)
simulator. Real-time simulation results illustrate the effectiveness
of the proposed control scheme to achieve trajectory tracking of
the distributed energy resources active and reactive power even in
the presence of grid disturbances.

Index Terms—Distributed energy resources (DERs), grid-
connected microgrid, low-voltage ride-through (LVRT), neural
network identification, real-time simulation, sliding mode.

NOMENCLATURE

xk, χk Real and estimated state vector.
uk, yk Input vector and output vector.
wi, �i Neural identifier adaptive and fixed weights.
vc(xk) Decoupled control part.
veqn(xk) Equivalent control.
vstn(xk) Stabilizing term.
sn,k Sliding surface.
Udc,k, Ûdc,k Real and estimated dc-link voltage.
igd,k, igq,k Grid d–q currents.
ugcd,k, ugcq,k Grid-side converter d–q inputs.
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îgd,k, îgq,k Estimated grid d–q currents.
ird,k, irq,k Rotor d–q currents.
îrd,k, îrq,k Estimated rotor d–q currents.
urd,k, urq,k Rotor-side converter d–q inputs.
Udcpv,k, Ipv Boost output voltage and current.
Upv,k Output solar panel voltage.
Ûdcpv,k, Îpv,k Estimated boost output voltage and current.
upvbo,k Boost input.
id,k, iq,k Solar panel inverter d–q currents.
îd,k, îq,k Estimated SPS d–q currents.
ud,k, uq,k Solar inverter d–q inputs.
Udcbtt,k, Ibtt Buck–boost voltage and current.
Ubtt,k Battery bank voltage.
Ûdcbtt,k, Îbtt,k Estimated buck–boost voltage and current.
uc,k Buck–boost input.

I. INTRODUCTION

NOWADAYS, the penetration of generated power using
renewable energy sources into the utility grid has been

growing continuously. In order to reach better exploitation of the
renewable energy, which is generated from different distributed
energy resources (DERs), the microgrid concept is being devel-
oped [1]. A microgrid is a low-to-medium-voltage distribution
network, which includes alternative sources like wind power
systems (WPSs), solar power systems (SPSs), energy storage
devices as battery bank (BB), local loads, and power electronic
devices among other electrical components. The purpose of
using appropriate power converters is to facilitate the DER
connection to the main grid, to guarantee high generated power
quality, and to control power flows [2].

Because of disturbances and voltage fluctuations, inappro-
priate effects can be produced and might affect the operation
of DERs installed into microgrids; those disturbances actually
present big challenges for microgrid control [3]. In the past,
DERs were disconnected during grid disturbances [4]. This
discontinuity in power generation might affect stability and
reliability of the whole network [5]. Taking into account high
penetration of renewable energy generation into medium- and
high-voltage networks, modern grid codes enforce DERs to
have low-voltage ride-through (LVRT) capacity, which is the
capability of a specific electric generator to stay connected to
the main grid in the presence of low voltage for a short period;
additionally, the installed local controllers should warranty mi-
crogrid transient stability and guarantee the transient stability to
enhance resilience of microgrid operations.
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In the literature, different methodologies using hardware de-
vices and/or modified control schemes have been developed in
order to accomplish the LVRT requirements. For hardware com-
ponents, there are different shunt/series devices included in DER
electrical configurations, such as protection devices/circuits acti-
vated during transient, and there are also reactive power injecting
devices in order to compensate voltage dips [6]. These solutions
are effective but make the control scheme more complex and in-
crease the total cost and power losses [7]. To overcome hardware
solutions drawbacks, different control strategies are adopted to
achieve LVRT capacity requirements. The most known con-
trollers, which are used to regulate DER dynamics, are the
conventional proportional–integral (PI) and the proportional-
resonance controllers [8], [9]. To develop those controllers for
LVRT enhancement, a decomposition process is needed, which
makes control implementation more complex [10]; in addition,
these classical controllers are inappropriate for trajectory track-
ing control, which is a required task for DER energy gener-
ation [11]. Another control technique that is widely used for
microgrid applications is the droop control [1], [12], which is
usually implemented using voltage and current control loops or
power and current control ones in a cascade configuration [13].
In [1], an LVRT control scheme, which improves power quality
during abnormal grid conditions, is developed, where a cascade
voltage and current control loop and a modified droop technique
are used to perform primary- and secondary-level control; the
latter controls the reactive power injection. In [14], a hierarchical
control that consists of primary and secondary layers is pro-
posed, where the primary layer based on the droop controller is
in charge of power regulation, while the secondary layer consists
of a dynamics consensus algorithm, which is responsible of
the LVRT operation of the microgrid. The droop method can
be implemented without communication links between micro-
grid subsystems, which improves reliability; its drawbacks are
largely discussed in the literature as [15]. In addition, LVRT
capacity in DERs connected to microgrid-based droop control
has not been adequately addressed [1], [15]. Moreover, big ef-
forts are being made to develop an efficient-LVRT-scheme-based
control to ensure microgrid stability in the presence of grid
disturbances.

Recently, technology advances have forced control engineers
to deal with complex systems, which include unknown dy-
namics, strong interconnection terms, and disturbances [16].
Then, conventional control techniques are unsuccessful to pro-
vide an effective solution to control this class of systems.
Neural networks have the potential for implementing nonlin-
ear system identification and control due to their capabili-
ties to approximate complex systems and to improve control
scheme performances [17]. In [18], a combinational scheme
of neural-network-based PI controller for the distribution static
synchronous compensator and crowbar is proposed to enhance
doubly fed induction generator (DFIG) transient stability in the
presence of asymmetrical faults; the included results illustrate
the effectiveness of the proposed technique; however, additional
devices are needed. In [19], a neural-network-based PI controller
and a classical one are compared regarding the impact of each
controller on the LVRT behavior of the DFIG under different
load models. In [20], an intelligent controller based on the

Takagi–Sugeno–Kang-type probabilistic fuzzy neural network
is developed for the reactive and active power control of a grid
connected photovoltaic system in the presence of grid faults; the
proposed controller allows us to regulate the reactive power to
a new desired value in order to fulfill the LVRT requirements.
In [21], a fault detection and identification based on voltage
indicator analysis using a neural network is developed for en-
hancing the LVRT capacity of the DFIG. The results obtained
in [19]–[21] illustrate the effectiveness of the proposed schemes;
however, they do not consider a large-scale power system with
more DER components.

This article extends the results of [22], where the proposed
neural sliding-mode linearization (NSML) control was applied
to regulate the active and reactive power of DERs under normal
grid conditions. In this article, the proposed scheme is used to
control: 1) the WPS-generated power based on a DFIG; 2) the
SPS-injected power, which is linked to the microgrid through a
boost converter and an inverter; and 3) the BB-delivered power,
which is connected to the microgrid via a buck–boost converter
and an inverter. The microgrid system is interconnected to an
IEEE nine-bus test system to evaluate its connection perfor-
mance and response under grid disturbances.

This article aims to improve the LVRT capacity of DERs in
the presence of grid disturbances by means of the following.

1) A controller based on a recurrent high-order neural net-
work (RHONN) identifier, trained online by an extended
Kalman filter (EKF), is proposed for each DER. The
proposed neural identifier helps to estimate the dynamics
of each microgrid DER even in the presence of parameter
variations and/or grid disturbances.

2) The obtained neural model is used to synthesize the neural
linearization control part of the proposed scheme, which is
utilized to linearize the system and to reject perturbations
caused by parameter changes and/or grid disturbances.

3) A sliding-mode controller is used to achieve the trajectory
tracking and to eliminate identification errors.

These errors are very small as addressed in [17], resulting
in a large reduction of the sliding-mode chattering phenomena.
By using the proposed control scheme, the LVRT capacity of
DERs is enhanced in the presence of grid disturbances, which
are incepted in both sides of the microgrid and/or utility grid (in
this case, IEEE nine-bus test system). At the same time, stability
is ensured for all DER components.

The rest of this article is organized as follows. In Section II,
mathematical preliminaries are presented. In Section III, the
proposed microgrid and the IEEE nine-bus test system are
described. The proposed neural controller is developed in
Section IV. Real-time simulation results of the proposed con-
trol strategy are discussed in Section V. Finally, conclusion is
provided in Section VI.

II. MATHEMATICAL PRELIMINARIES

A. Neural Identification

Consider the following nonlinear system [11]:

xk+1 = f(xk) +B(xk)u(xk) + d(xk) (1)

yk = h(xk) (2)
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where k ∈ Z+ ∪ {0} denotes the discrete time, with Z+ being
the set of positive integers, xk ∈ �n is the state vector of the
system, uk ∈ �m is the input vector, yk ∈ �p is the output
vector to be controlled, and the functions f(•), B(•), h(•), and
d(•) are smooth and bounded vector fields. Note that this article
proposes the modeling and control design in discrete time, as
well as the application, for which well-defined methodologies
and algorithms can be implemented in real time. The selection
of the neural identifier structure is arbitrary, but it considers the
structure of system (1), (2). There are different considerations
to be taken into account for the neural network design, such as
maintaining properties like controllability, improving robustness
in the presence of internal disturbances as well as external
ones, and solving control implementation problems caused by
couplings among subsystems, inputs, and outputs [17]. Using a
series–parallel configuration, the proposed neural identifier for
system (1) is given by [17]

χi,k+1 = wT
i φi(xk) +�T

i ϕi(xk, uk) (3)

where χi,k is the state of the ith neuron, which identifies
the ith component of xk, wi ∈ �Li are adjustable weights
of the neural identifier, �i are the fixed ones for the con-
trol matrix, φi ∈ �Li is a smooth vector function defined as
φi(•) = [φi,1(.), . . ., φi,L(.)]

T ∈ �Li and Li is the connec-
tion number, such as each component is given as φi,j(•) =
φi,1(S(x1,k), . . ., S(xn,k))

T , and ϕi is a linear function of the
states or inputs. The function S(•) is an activation function; it is
selected as a hyperbolic tangent function [17]. In order to attain
identification objectives, the EKF-based algorithm is selected to
train the proposed neural identifier [17], as follows:

Ki,k = Pi,kHi,k

[
Ri,k +HT

i,kPi,kHi,k

]−1
(4)

wi,k+1 = wi,k + ηiKi,kei,k (5)

Pi,k+1 = Pi,k −Ki,kH
T
i,kPi,k +Qi,k (6)

ei,k = xi,k − χi,k, i = 1, 2, . . . , n (7)

where ei ∈ R is the identification error of each state, Pi ∈
RLi×Li is the covariance matrix of prediction errors, wi ∈ Rli

is the adjustable weights vector, ηi is a constant parameter,
Ki,k ∈ RLi×m is the Kalman gain matrix, Qi,k ∈ RLi×Li is the
covariance matrix associated with the state noise,Ri,k ∈ Rm×m

is the covariance matrix associated with the measurement noise,
and Hi ∈ RLi×m is a matrix containing the derivative of the
neural network states xi with respect to each neural weight.

B. NSML Control

In this section, the NSML controller is synthesized. Taking
into consideration neural identification properties, such as the
capability to absorb disturbances, the proposed neural model
(3) for system (1), (2) is rewritten as

χk+1 = f̂(xk) + B̂u(xk) (8)

ŷk = ĥ(xk) (9)

where χk ∈ �n is the estimated state vector, ŷk ∈ �p is the
estimated output vector to be controlled, B̂ is the control matrix
composed by the fixed weights, and the vector f̂ (•), and ĥ(•) are

smooth and bounded vector fields. By considering the discrete-
time separation principle [23], which states that the identifier
and controller can be independently synthesized, the NSML
controller is established as follows.

Theorem 1: For the system (8), (9), the NSML control law

u(xk) = −B̂−1f̂(xk) + v(xk) (10)

allows us to use the discrete-time sliding-mode control
(DTSMC) methodology to define v(xk) in order to ensure that
the respective sliding manifold is ultimately bounded, achiev-
ing system outputs converging toward their respective desired
values.

The proposed control law (10) is composed of two parts:
1) the neural linearization control part, which is expressed by
(−B̂−1f̂(xk)) with a negative sign to exactly eliminate the term
f̂(xk) in order to linearize (8) and 2) the decoupled control part
v(xk), which is determined by a DTSMC as follows. Equation
(9) at k + 1 is calculated as follows:

ŷk+1 = χk+1 = f̂(xk) + B̂u(xk). (11)

The matrix B̂ is invertible because it is composed of the fixed
weights; the neural linearization control part is calculated by
(10). Substituting (10) into (8), the decoupled linear system is
obtained as

ŷk+1 = v(xk) (12)

with v(xk) determined by means of the DTSMC [24] as

v(xk) =

{
vc(xk), if ‖vc(xk)‖ ≤ u0

u0
veqn(xk)
‖veqn(xk)‖ , if ‖vc(xk)‖ > u0

(13)

where ‖ v(xk) ‖< u0,u0 > 0 is the bound of the control signal,
and vc(xk) = veqn(xk) + vstn(xk), where veqn(xk) is the equiv-
alent control and vstn(xk) is a stabilizing term. The sliding-mode
surface is selected as follows:

sn,k = χk − xref,k (14)

with xref,k being the reference signal to be tracked. The sn,k
expression at k + 1 is obtained as

sn,k+1 = v(xk)− xref,k+1. (15)

Then, the equivalent control is calculated by evaluatingsn,k+1 =
0 as follows:

veqn(xk) = xref,k+1. (16)

Using (16) in (15), the sliding surface sn,k = 0 is reached in one
sample time. The stabilizing term is calculated as

vstn(xk) = −knsn,k (17)

where kn is the Schur matrix [25]. The corresponding proof of
Theorem 1 is included in the Appendix.

III. CONSIDERED MICROGRID

The considered microgrid is presented in Fig. 1. It is composed
of an WPS based on the DFIG, whose rotor is linked to the
microgrid through a back-to-back converter, while its stator is
directly connected to the microgrid; an SPS linked to the micro-
grid through two converters: a boost converter and an inverter; a



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE SYSTEMS JOURNAL

Fig. 1. Microgrid electrical structure.

BB coupled to the microgrid via a series-connected buck–boost
converter to an inverter; and a load demand. In addition, this
microgrid is linked through bus nine to an IEEE nine-bus test
system, which consists of nine buses, four electric synchronous
generators with IEEE type-1 exciters, three ac electric loads,
six transmission lines, and five electric transformers. For more
details about the IEEE nine-bus test system see [26] and [27].
The structure of this IEEE nine-bus system is presented in Fig. 2.

IV. MICROGRID NEURAL CONTROLLERS

RHONN identifiers are proposed for the microgrid compo-
nents to improve robustness of the proposed control scheme in
the presence of parameter variations and/or grid disturbances;
it is assumed that all the state variables are measured. The
design of the RHONN identifier takes into account the following
considerations.

1) The proposed neural identifier for each DER should have
an appropriate structure considering state and input vec-
tors.

2) The proposed neural identifier structure should be
designed using a minimum number of sensors in order
to reduce costs.

3) Based on the neural identifier capability to absorb distur-
bances, the interconnection terms as well as disturbances
are not included in the proposed neural models.

4) The proposed neural identifier should be selected to reduce
coupling between the control axes and to simplify the
controller design and implementation.

A. WPS Neural Controller

Regarding the mechanical part, it is assumed that the DFIG
is operated at its synchronous speed.

1) DC Link: The objective of this controller is to force the
voltage at the dc-link output to track desired values and at
the same time to track the microgrid power factor reference.
The respective RHONN identifier is proposed as [22]

χ1,k+1 = f̂1(x1,k) + B̂1u1(x1,k) (18)

ŷ1,k == ĥ1(x1,k) (19)

where x1,k = [Udc,k igd,k igq,k]
T is the state vector, which

is the dc voltage at the dc link, igd,k and igq,k are the grid

d and q currents, respectively, χ1,k = [Ûdc,k îgd,k îgq,k]
T

is the vector estimated by the neural identifier,
u1 = [ugcd,k ugcq,k]

T is the control vector, which is
constituted by the grid-side converter voltages, ŷ1 =
[ĥ11(x1,k) ĥ12(x1,k) ĥ13(x1,k)]

T = [Ûdc,k îgd,k îgq,k]
T is the

output vector to be controlled, B̂1 = diag[�1,2, �1,3], and
f̂1(x1,k) = [f̂11(x1,k) f̂12(x1,k) f̂13(x1,k)], where

f̂11(x1,k) = w11S(Udc,k) + w12S(Udc,k)S(igq,k) +�1,1igd,k

f̂12(x1,k) = w21S(igd,k) + w22S(igq,k) + w23S(Udc,k)

f̂13(x1,k) = w31S(igq,k) + w32S(igd,k).

From (18) and (19), the dc voltage is controlled by the grid d
currents. Using Theorem 1, the dc voltage neural linearization
control part is calculated as

igd,k =
−1

�1,1
f̂11(xk) + v1,1,k (20)

with �1,1 �= 0 a fixed weight and v1,1,k the dc-voltage-
decoupled control such that a DTSMC is used to define it, as
shown in Theorem 1, where veqn1,1 is the equivalent control
defined as

veqn1,1 = Udcref,k+1 (21)

where Udcref,k is the dc voltage desired value. The stabilizing
term vstn1,1 is defined as

vstn1,1 = −k1,1s1n,1,k (22)

where s1n,1,k is the dc voltage sliding surface defined as
s1n,1,k = Udcref,k − Ûdc,k.

The dc voltage control law igd,k determines the grid d current
desired values (20). In order to define the grid q reference, the
following expression is used:

igqref,k = −igd,k

√
1− f2

gref

fgref
(23)

where fgref is the grid power factor desired value. Using
Theorem 1, the grid current neural linearization control part is
obtained from ĥ12(x1,k) and ĥ13(x1,k) at k + 1 as

[
ugcd,k

ugcq,k

]
= B̂−1

1

[−f̂12(xk)

−f̂13(xk)

]
+

[
v1,2,k
v1,3,k

]
(24)

where v1,2,k and v1,3,k are the grid-current-decoupled control
parts, which are defined as described in Section II [see (12)–(17)]
such that the sliding surfaces of the grid currents are defined as
s1n,2,k = igdref,k − îgd,k and s1n,3,k = igqref,k − îgq,k.

2) DFIG: The purpose of this controller is to track the desired
dynamics of the stator active and reactive power through the
control of the rotord–q currents; their neural identifier is selected
as follows:

χ2,k+1 = f̂2(x2,k) + B̂2u2(x2,k) (25)

ŷ2,k == ĥ2(x2,k) (26)

where x2,k = [ird,k irq,k]
T is the DFIG rotor currents state

vector, χ2 = [̂ird,k îrq,k]
T is the vector estimated by the
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Fig. 2. IEEE nine-bus electric structure.

neural identifier, u2,k = [urd,k urq,k]
T is the control vec-

tor, ŷ2 = [ĥ21(x2,k) ĥ22(x2,k)]
T = [̂ird,k îrq,k]

T is the output
vector to be controlled, B̂2 = diag[�2,1, �2,2], and f̂2(x2,k) =

[f̂21(x2,k) f̂22(x2,k)]
T is as

f̂21(x2,k) = w11,kS(ird,k) + w12,kS(ird,k)S(irq,k)

+ w13,kS(irq,k)

f̂22(x2,k) = w21,kS(irq,k) + w22,kS(ird,k)S(irq,k)

+ w23,kS(ird,k).

In order to design the NSML controller for the stator active and
reactive power, the same steps as explained in Theorem 1 are
followed. The neural linearization control is obtained as

[
urd,k

urq,k

]
= B̂−1

2

[−f̂23(xk)

−f̂24(xk)

]
+

[
v2,1,k
v2,2,k

]
(27)

where v2,1,k and v2,2,k are the rotor-decoupled control parts,
which are defined as described in Section II [see (12)–(17)], such
that the sliding surfaces of the rotor current, s2n,1,k and s2n,2,k,
are defined as s2n,1,k = irdref,k − îrd,k, and s2n,2,k = irqref,k −
îrq,k, respectively. The desired value of the rotor currents is
obtained by using the following expressions:

irdref,k = kdqeq,k + kiq
ts

z − 1
eq,k (28)

where eq,k = Qsref,k −Qs,k is the error of the desired and real
dynamics of the stator reactive power, kdq and kiq are the
proportional and integral controller gains, respectively, and ts
is the sample time, and

irqref,k = kdpep,k + kip
ts

z − 1
ep,k (29)

where ep,k = Psref,k − Ps,k is the error of the desired and real
trajectory of the stator active power.

B. SPS Neural Controller

1) Boost Converter: The objective is to force the dc voltage
at the output of the boost converter to keep its desired constant
value. In order to do so, the control scheme is composed of
two controllers in cascade. The first one is used to generate
the reference of the boost converter output current, and the
second one is utilized to track the obtained current reference.
The proposed RHONN identifier for this converter is selected
as follows:

χ3,k+1 = f̂3(x3,k) + B̂3u3(x3,k) (30)

ŷ3,k == ĥ3(x3,k) (31)

where x3,k = [Udcpv,k Ipv,k]
T is the solar power boost converter

state vector, χ3,k = [Ûdcpv,k Îpv,k]
T is the vector estimated by

the neural identifier, u3 = upvbo,k is the control vector, ŷ3 =

[ĥ31(x3,k) ĥ32(x3,k)]
T = [Ûdcpv,k Îpv,k]

T is the output vector
to be controlled, and f̂3(x3,k) = [f̂31(x3,k) f̂32(x3,k)]

T , where

f̂31(x3,k) = w11,kS(Udcpv,k) + w12,kS(Ipv,k)

+ w13,kS(Udcpv,k)S(Ipv,k) +�3,1Îpv,k

f̂32(x3,k) = w21,kS(Ipv,k) + w22,kS(Udcpv,k)

+ w23,kS(Upv,k) + w24,kS(Ipv,k)S(Udcpv,k)

where Udcpv,k is the boost output voltage (V ), Ipv is the boost
output current (in amperes), and Upv,k is the output solar panel
array voltage (in volts). Applying Theorem 1, the neural lin-
earization control of the dc voltage is calculated as follows:

Ipvref,k =
−1

�3,1
f̂31(x3,k) + v3,1. (32)

The neural linearization control of the current is obtained as

upvbo =
−1

�3,2
f̂32(x3,k) + v3,2. (33)
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The decoupled control part for the dc voltage v3,1 and current
v3,2 boost converter is defined as in Section II [see (12)–(17)],
where the sliding surface of the boost converter dc voltage is
defined as s3n,1,k = Udcpvref,k − Ûdcpv,k, and the sliding surface
for the boost converter current is selected as s3n,2,k = Ipvref,k −
Îpv,k.

2) SPS Inverter: The objective of this controller is to regulate
the injected active and reactive power into the microgrid via
control of the currents flow between the grid and the inverter.
The proposed RHONN identifier is selected as follows:

χ4,k+1 = f̂4(x4,k) + B̂4u4(x4,k) (34)

ŷ4,k == ĥ4(x4,k) (35)

where x4,k = [id,k iq,k]
T is the solar panel inverter state

vector, χ4 = [̂id,k îq,k]
T is the vector estimated by the

neural identifier, u4,k = [ud,k uq,k]
T is the control vector,

ŷ4 = [ĥ41(x4,k) ĥ42(x4,k)]
T = [̂id,k îq,k]

T is the output vec-
tor to be controlled, B̂4 = diag[�4,1, �4,2], and f̂4(x4,k) =

[f̂41(x4,k) f̂42(x4,k)]
T , where

f̂41(x4,k)=w11,kS(id,k)+w12,kS(iq,k)+w13,kS(id,k)S(id,k)

f̂42(x4,k)=w21,kS(iq,k)+w22,kS(id,k)+w23,kS(iq,k)S(id,k).

Here, id,k and iq,k are the grid d and q currents, respectively;
ud,k and uq,k are the converter-side d and q voltages, respec-
tively. Using Theorem 1, the neural linearization control of the
grid currents is obtained as

[
ud

uq

]
= B̂−1

4

[−f̂41(x4,k)

−f̂42(x4,k)

]
+

[
v4,1
v4,2

]
(36)

where v4,1 and v4,2 are the grid currents of the decoupled
controller, which are calculated following the controller design
problem, as explained in Section II [see (12)–(17)]. The slid-
ing surfaces for the grid d–q currents, s4n,1,k and s4n,2,k, are
defined as s4n,1,k = idref,k − îd,k and s4n,2,k = iqref,k − îq,k,
respectively. The desired values of the grid currents are obtained
by using a discrete-time PI controller, as in (28) and (29).

C. BB Neural Controller

1) Buck–Boost: The control objective is to allow for charging
and discharging operation modes (buck or boost mode). For the
current flow direction between the converter and the battery, the
positive sign means that the BB is discharging, while the negative
sign means that it is charging. Taking into account the adaptive
nature of the RHONN identifier, and the similitude between the
buck and boost converter models, a single RHONN identifier is
proposed for both cases as

χ5,k+1 = f̂5(x5,k) + B̂5u5(x5,k, k) (37)

ŷ5,k == ĥ5(x5,k) (38)

where x5,k = [Udcbtt,k Ibtt,k]
T is the buck–boost power con-

verter state vector, χ5,k = [Ûdcbtt,k Îbtt,k]
T is the vector esti-

mated by the neural identifier, u5 = uc,k is the input signal,
ŷ5 = ĥ52(x5,k) = Îbtt,k is the output to be controlled, B̂5 =

diag[0, �5,2], and f̂5(x5,k) = [f̂51(x5,k) f̂52(x5,k)]
T , where

f̂51(x5,k) = w11,kS(Udcbtt,k) + w12,kS(Ibtt,k)

+ w13,kS(Udcbtt,k)S(Ibtt,k) +�5,1Ibtt,k

f̂52(x5,k) = w21,kS(Ibtt,k) + w22,kS(Udcbtt,k)

+ w23,kS(Ibtt,k)S(Udcbtt,k)

with Udcbtt,k being the buck–boost output voltage (in volts), Ibtt

the buck–boost output current (in amperes), and Ubtt,k the BB
voltage (in volts). The BB current reference is calculated as
follows:

Ibttref,k =
Pbttref,k

Udcbtt,k
(39)

where Pbttref is the BB power reference. The neural linearization
control part of the current flow through the buck–boost converter
inductor is obtained as follows:

uc,k =
1

�5,2

(
−f̂52(x5,k)

)
+ v5 (40)

where �5,2 �= 0 is a fixed control weight and v5 is the buck–
boost converter output-current -decoupled control; its sliding
surface is defined as s5n,k = Ibttref,k − Îbtt,k.

2) BB Inverter: The control objective is divided as follows:
1) for the charging operation mode, the inverter controller objec-
tive is to maintain the dc-bus voltage constant, so the controller
is the same as the one applied to the dc-link voltage at WPS,
and 2) for the discharging operation mode, the purpose is to
control the active and reactive power injected into the grid, so
the controller is the same as the one used in the SPS inverter.

V. REAL-TIME SIMULATION RESULTS

The proposed local controller, the microgrid, and the selected
IEEE nine-bus network are simulated in real time using the
SimPower System toolbox of MATLAB1 and the Opal-RT (OP
5600) Simulator.2 To determine the size of the WPS, the SPS, the
BB, and the power converters, different factors are considered, as
addressed in [28] and[29]. Considering that this article is focused
on the resilience enhancement of the grid-connected microgrid,
only the variability of renewable energy resources (wind speed
and solar irradiation for the considered site) and the load demand
are considered. The expected maximum power generated by the
microgrid is 2.86%(10.5 MW) of the system total power. The
maximum generated power by the WPS and SPS is 85% (9 MW)
and 15% (1.5 MW) of the microgrid power, respectively. The BB
is used to maximize the usage of the renewable energy and to
minimize the power injection from the power system by storing
energy whenever the supply from the WPS and SPS exceeds the
load demand. The maximum power that can be injected to the
microgrid is 500 kW. In addition, a resistive load with a value of
10 MW is installed in order to maintain a balanced power flow.
Moreover, the microgrid design allows us to supply the power
system by generated power from the DERs. Table I presents the

1MATLAB, Simulink. de 1994-2018, The Math Works, Inc.
2Opal-RT (OP5600) Simulator Opal-RT Technologies, Inc.
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TABLE I
MICROGRID EQUIPMENT SIZING AND PARAMETERS

TABLE II
IEEE NINE-BUS POWER GENERATION

Fig. 3. Three-phase voltages and current: normal grid conditions.

parameters and the power equipment sizing of the microgrid un-
der study. To evaluate the capabilities of the proposed DER local
controllers in the presence of grid disturbances, different fault
grid conditions are considered: single-phase-to-ground, two-
phase-to-ground, and three-phase-to-ground, which are applied
at two different locations. The first location is selected between
buses six and nine (near to bus six, Fig. 2), whereas the second
one is placed between the point of common coupling (PCC)
bus and the microgrid. Table II displays the parameters of the
power generations in each bus, including the microgrid (for more
details about the IEEE nine-bus parameters, see [26] and [27]).

A. Normal Grid Conditions

The objective of this experiment is to test the proposed local
controller performances under ideal grid conditions. The con-
trol tracking results of DERs are presented in Figs. 3–11. The
following microgrid operation conditions are considered.

Fig. 4. WPS-controlled dynamics: NSML and normal grid conditions.

Fig. 5. DFIG d–q rotor currents: NSML and normal grid conditions.

1) The generated active power from each DER is forced to
track a time-varying trajectory in order to test the proposed
control scheme in the presence of reference changes.

2) In real applications, these reference changes cause WPS
and SPS power generation fluctuation due to fast wind
speed and cloud transients.

3) The maximum power point tracking is not considered for
any WPS or SPS.

4) The generated reactive power from each DER is kept at
zero in order to ensure power factor equal to 1.

5) The load demand is fixed at 10 MW during the whole
simulation lapse.

6) From t = 0 s to t = 3 s and t = 6 s to t = 10 s, the gener-
ated power from the microgrid satisfies the load demand,
and the exceeded power is injected in the power system.

7) From t = 3 s to t = 6 s, the generated power from the
microgrid is not enough to satisfy the load demand, and
the power is injected from the power system.

Fig. 3(a) and (b) illustrates the three-phase voltages and the
three-phase currents in per unit (p.u.), as measured at the PCC
bus, respectively. Fig. 4(a) displays the dc voltage generated at
the output of the dc link, while the stator active and reactive
power obtained from the DFIG stator are presented in Fig. 4(b)
and (c), respectively. The dc voltage is forced to track a constant
value of 1.5 kV, whereas the stator active power is forced to track
a time-varying reference, and the stator reactive power is fixed
at zero. Fig. 5 displays the tracking response of the DFIG d–q
rotor currents. The rotor q current tracks a time-varying reference
obtained from the outer control loop of stator active power, and
the rotor d current is forced to be at a constant value defined
from the reactive power outer control loop (see Section IV-A2).
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Fig. 6. WPS controlled dynamics: PI, normal grid conditions.

Fig. 7. THD for the NSML and the PI controllers.

The NSML controller is used for the inner control loop to force
the rotor currents to track their desired references. In order to
highlight the benefits of the proposed scheme for DER dynamics
control, a comparison with the PI controller, which is the most
used one, is done. As an example, it is used to control the
WPS active and reactive power. Fig. 6 presents the obtained
WPS dynamics when controlled by the PI scheme. Fig. 7 illus-
trates the single-side amplitude analyses and the total harmonic
distortion (THD) of the voltages and currents, respectively, as
measured at the PCC for the NSML (THD = 0.8362% [see
Fig. 7(a)] and THD = 3.1880% [see Fig. 7(b)]) and for the
PI (THD = 2.8111% [see Fig. 7(c)] and THD = 5.6481% [see
Fig. 7(d)]) controllers. It is clear to see that both controllers
achieve good WPS dynamics trajectory tracking with notable
improvement in THD voltages and currents values at the PCC
when the proposed scheme is utilized. In addition, the response
time of the proposed controller is 0.003 s [see Fig. 4(b)], which
ensures the WPS trajectory tracking even in the presence of
power generation fluctuations caused by fast wind changes
(≥ 0.003 s). Fig. 8(a) portrays the dc voltage at the output of
the solar panel boost converter, while Fig. 8(b) and (c) presents
the solar panel inverter active and reactive power, respectively.
The NSML controller is used to force the output of the boost
converter to track a constant value of 1 kV, whereas the active
power at the solar panel inverter is forced to track a time-varying
reference, where its amplitude can vary from 125 to 250 kW. The
solar panel inverter reactive power is maintained constant at zero.
The nominal value of the generated power from the solar panels
is 1.5 MW. The tracking response of the solar panel inverter d–q
currents is presented in Fig. 9, where the output of the active
and reactive power PI controller is used to generate the inverter

Fig. 8. Solar-panel-controlled dynamics: NSML and normal grid conditions.

Fig. 9. Solar panel inverter d–q currents: NSML and normal grid conditions.

Fig. 10. BB charging and discharging operating modes.

current desired dynamics (see Section IV-B2). From the obtained
results, it is possible to conclude that the proposed controller
for SPS ensures good trajectory tracking even in the presence of
reference changes. In addition, the response time of the proposed
controller is 0.0025 s [see Fig. 8(b)], which ensures SPS stability
even in the presence of power generation fluctuations caused by
fast cloud transients (≥ 0.0025 s). Fig. 10(a) illustrates the direct
power and Fig. 10(b) displays the direct current flow between the
BB and the buck–boost converter for charging and discharging
modes. The BB state of charge is presented in Fig. 10(c). In the
charging operating mode, t = 0 to t = 5 s, the boost mode is
selected. For this mode, a negative direct power desired value
is applied, and (39) is used to calculate the desired trajectory
of the direct current. In the discharging operating mode, t = 5 s
to t = 10 s, the buck mode is chosen to obtain a positive direct
power, and again, (39) is used to determine the reference of the
direct current. Fig. 11(a) gives the dc voltage at the output of the
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Fig. 11. BB-controlled dynamics: NSML and normal grid conditions.

Fig. 12. Three-phase voltages and current: single-phase-to-ground fault.

buck–boost converter in the discharging operating mode, which
is forced by the buck converter controller to track a desired value
equal to 1 kV. Fig. 11(b) and (c) displays the injected active
and reactive power controlled by the BB inverter controller.
The maximum power that can be injected to the grid from this
system is 500 kW. From these results, it is very clear that the
proposed local controller for each microgrid subsystem allows
us to obtain tracking of the desired trajectories for the active
and reactive powers, which are generated by the WPS, SPS,
and BB, respectively, and ensures charging and discharging
operation modes of the BB. In addition, the proposed control
scheme improves the THD voltage and current value at the PCC
in comparison with the PI controller.

B. Abnormal Grid Conditions: First Location

In this section, single-phase-to-ground, two-phase-to-ground,
and three-phase-to-ground grid faults are induced in bus six
(see Fig. 2). These faults are applied for 5 s, which present
enough time to examine the LVRT capacity of the installed DERs
according to the standard IEEE 1159-1995.

1) Single-Phase-to-Ground Fault Case: Fig. 12(a) and (b)
presents the three-phase voltages and the three-phase currents
as obtained at the PCC, where a 50% voltage dip of 575 V
appears at the faulted phase, and the other phases are kept at
a nominal value. Fig. 13(a) displays the dc voltage at the output
of the dc link, whereas the DFIG stator active and reactive
powers, as generated by the WPS, are presented in Fig. 13(b) and
(c), respectively. The stator active power reference is selected
to be constant at 1.5 MW, and the stator reactive power set
point is zero. Fig. 14 presents the WPS dynamics when the
PI is used. It is clear that single-phase-to-ground fault causes

Fig. 13. WPS-controlled dynamics: NSML and single-phase-to-ground fault.

Fig. 14. WPS-controlled dynamics: PI and single-phase-to-ground fault.

Fig. 15. SPS-controlled dynamics: NSML and single-phase-to-ground fault.

high-amplitude ripples on the WPS dynamics when controlled
by the PI scheme and may lead to instability of the isolated wind
system and perhaps the microgrid. This fault has no significant
impact on WPS dynamics when the proposed scheme is used.
The solar panel dc voltage and the solar panel inverter active
and reactive power responses are presented in Fig. 15(a)–(c),
respectively. The injected active power generated by the solar
panel is maintained at 250 kW, whereas the reactive power is
kept constant at zero. Fig. 16 displays the dc voltage at the output
of the BB buck–boost converter at the discharging operating
mode and the BB inverter active and reactive power. The injected
active power is operated to track a constant reference equal to
500 kW, while the reactive power is fixed at zero.

2) Two-Phase-to-Ground Fault: Fig. 17(a) and (b) illustrates
the three-phase voltages and the three-phase currents as plotted
at the PCC when a two-phase-to-ground fault is inserted. A 45%
voltage dip of 575 V appears at the two faulted phases. The
dc-link voltage and the DFIG stator active and reactive power
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Fig. 16. BB-controlled dynamics: NSML and single-phase-to-ground fault.

Fig. 17. Three-phase voltages and current: two-phase-to-ground fault.

Fig. 18. WPS-controlled dynamics: NSML and two-phase-to-ground fault.

Fig. 19. WPS-controlled dynamics: PI and two-phase-to-ground fault.

are presented in Fig. 18. Fig. 19 illustrates the WPS dynamics
when the PI controller is used. From these results, it is clear
that the proposed control scheme ensures stability of the WPS
dynamics even in the presence of the two-phase-to-ground fault,
while considerable ripples are presented when the PI controller
is utilized. Fig. 20 displays the obtained result of the solar
panel dynamics, such that the dc voltage at the output of the
boost converter is presented in Fig. 20(a); the injected active
and reactive powers at the output of the solar panel inverter

Fig. 20. SPS-controlled dynamics: NSML and two-phase-to-ground fault.

Fig. 21. BB-controlled dynamics: NSML and two-phase-to-ground fault.

Fig. 22. Three-phase voltages and current: three-phase-to-ground fault.

Fig. 23. WPS-controlled dynamics: NSML and three-phase-to-ground fault.

are given in Fig. 20(b) and (c), respectively. The dc voltage at
the output of the BB buck–boost converter and the active and
reactive powers calculated at the output of the BB inverter are
presented in Fig. 21(a)–(c), respectively.

3) Three-Phase-to-Ground Fault: Fig. 22(a) and (b) displays
the dynamics of the three-phase voltage and the three-phase
current at the PCC. A 50% symmetric voltage dip of 575 V
appears. Fig. 23(a) presents the dc voltage at the output of the
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Fig. 24. SPS-controlled dynamics: three-phase-to-ground fault.

Fig. 25. BB-controlled dynamics: three-phase-to-ground fault.

dc link. The stator active and reactive powers when controlled
by the proposed scheme and their references are illustrated in
Fig. 23(b) and (c), respectively. Figs. 24 and 25 display the solar
panel inverter and BB inverter controlled dynamics, respectively.

C. Abnormal Grid Conditions: Second Location

For this second location, single-phase-to-ground and two-
phase-to-ground faults are incepted between the PCC and the
microgrid. The same results as for the first location case are
obtained. The respective results are not included in order to
fulfill the paper length requirements. From the results, we con-
clude that the proposed controller for each microgrid generation
unit achieves the control objectives and ensures stability of the
controlled system under normal and abnormal grid conditions.
In addition, the LVRT capacity of the DERs is improved by using
the proposed scheme as compared with the PI controller, which
is unable to ensure stability in the presence of abnormal grid
conditions.

VI. CONCLUSION

This article presented a real-time simulation of an NSML
controller for a grid-connected microgrid. The proposed local
controller for each subsystem is used to control the active and
reactive powers, which is injected to the grid. Each proposed
local controller is based on an RHONN identifier. The neural
identifiers approximate the respective nonlinear dynamics and
allow the controller to reject disturbances caused by parameter
variation and/or abnormal grid conditions. Real-time simulation
results illustrate the effectiveness of the proposed scheme to
achieve trajectory tracking of the DER power references even
in the presence of grid disturbances. In addition, due to the fact
that the identifier and the controller are separately designed for

each component, new elements can be easily integrated for a
large power system. Nevertheless, to select the neural identifier
structure for each DER, to know an approximated mathematical
model is helpful. In addition, only resistive load is considered in
this article; however, various combinations of resistive, induc-
tive, and capacitive loads could be considered. All these results
allow us to establish that the proposed control schemes improve
substantially the respective microgrid resilience. As a future
work, the proposed control scheme can be extended to regulate
the generated power of other distributed resources. In addition,
it is advisable to include tests for a more complex power system
with different grid fault scenarios.

APPENDIX

PROOF OF THEOREM 1

The DTSMC v(xk) is selected as (13). Taking into account the
separation principle [23], the convergence proof of the proposed
control scheme is analyzed as follows.

Due to identification error boundedness, there exists a
bounded vector valued functionΔi,k; then, we have

xk = χk −Δi,k, i = 1, . . . , r (41)

where ‖Δi,k‖ ≤ γi, γi > 0, and r is the number of the state. The
sliding surface at k + 1 is defined using xk as follows:

sn,k+1 = xref,k+1 − xk+1. (42)

Using (41) in (42), we obtain

sn,k+1 = xref,k+1 − χk+1 +Δi,k. (43)

Using the neural linearization control (10), the sliding surface is
expressed as follows:

sn,k+1 = xref,k+1 − v(xk) + Δi,k. (44)

The DTSMC in (13) includes the following two cases.
1) For ||vc(xk)|| ≤ u0, the control law vc,k is applied.

Using (16) and (17) in (43), the sliding surface at k + 1 is

sn,k+1 = knsn,k +Δi,k. (45)

Let us define the Lyapunov function candidate Vk =
sTn,ksn,k; then, its difference is given as

ΔVk = sTn,k+1sn,k+1 − sTn,ksn,k

= (knsn,k +Δi,k)
T (knsn,k +Δi,k)− sTn,ksn,k

≤ (‖kn‖ ‖sn,k‖+ ‖Δi,k‖)2 − ‖sn,k‖2

≤ (‖kn‖ ‖sn,k‖+ γi)
2 − ‖sn,k‖2

≤ − (1− θ1)η1 ‖sn,k‖2 + γ2
i

+ (−θ1η1 ‖sn,k‖+ 2 ‖kn‖ γi) ‖sn,k‖
with 0 < θ1 < 1, η1 = (1− ‖kn‖2), and η1 > 0, and for
the region ‖sn,k‖ ≥ 2γi‖kn‖

θ1η1
, we obtain

ΔVk ≤ −(1− θ1)η1 ‖sn,k‖2 + γ2
i

ΔVk ≤ −(1− θ2)β1 ‖sn,k‖2 − θ2β ‖sn,k‖2 + Γ2

ΔVk ≤ −(1− θ2)β1 ‖sn,k‖2
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with 0 < θ2 < 1,β1 = (1− θ1)η1 andβ1 > 0. Therefore,

ΔVk ≤ 0, ∀ ‖sn,k‖ ≥
√

γ2
i

θ2β1
, and the solution of system

(43) is ultimately bounded.
2) For ||vc(xk)|| > u0, the control law u0

veqn(xk)
‖veqn(xk)‖ is

utilized.
Let us define the equivalent control by imposing sn,k −
xref,k + χk = 0. The equivalent control is defined as

veqn,k = sn,k + fn,k (46)

with fn,k = −xref,k + χk + xref,k+1. Then, the expres-
sion of the sliding-mode surface is

sn,k+1 = sn,k − xref,k + xk + xref,k+1 − vn(xk) + Δi,k

= (sn,k + fn,k)

(
1− u0

1

‖veqn,k‖
)
+Δi,k

Using the Lyapunov function candidate Vk = sTn,ksn,k,
we have

ΔVk = sTn,k+1sn,k+1 − sTn,ksn,k

≤ (‖sn,k + fn,k‖ − ‖u0‖+ ‖Δi,k‖)2 − ‖sn,k‖2 .
Suppose that the control law ‖u(xk)‖ ≤ u0 may vary
within the domain [30], ‖fn,k +Δi,k‖ ≤ u0, and σ < u0,
where σ = ‖fn,k +Δi,k‖; then, we have

ΔVk ≤ (‖sn,k‖+ σ − ‖u0‖)2 − ‖sn,k‖2

≤ (2 ‖sn,k‖+ σ − ‖u0‖) (σ − ‖u0‖)
≤ − (2 ‖sn,k‖+ σ − ‖u0‖) (‖u0‖ − σ) . (47)

If ‖fn,k +Δi,k‖ ≤ ‖u0‖ ≤ (2‖sn,k‖+ ‖fn,k +Δi,k‖)
holds, then ΔVk ≤ 0 [17]. Hence, ‖sn,k‖ and ‖veqn,k‖
both decrease monotonically. Therefore, there will be a
timek1 such that ‖veqn,k‖ ≤ ‖u0‖ fork ≥ k1. At that time,
the control law vc is applied, yielding that the solution of
the system (45) is ultimately bounded. �
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